

GASTOp

[image: Current Release] [https://pypi.org/project/gastop/] [image: Python versions supported] [https://pypi.org/project/gastop]

[image: Build Status] [https://travis-ci.org/f0uriest/GASTOp] [image: Code Coverage] [https://coveralls.io/github/f0uriest/GASTOp?branch=dev] [image: Code Quality] [https://www.codacy.com/app/f0uriest/GASTOp?utm_source=github.com&utm_medium=referral&utm_content=f0uriest/GASTOp&utm_campaign=Badge_Grade]

[image: Documentation Status] [https://gastop.readthedocs.io/en/latest/?badge=latest] [image: License: GPL v3] [https://github.com/f0uriest/GASTOp/blob/master/LICENSE]

Quickstart

GASTOp is a Genetic Algorithm for Structural design and Topological Optimization.
Given a set of boundary conditions such as applied loads and fixtures, it will design a structure to support those loads while minimizing weight and deflections and maximize factor of safety.

Installation

Install gastop by running:

$ pip install gastop

Usage

Look how easy it is to use:

import gastop
config_file_path = "./path_to_config_file.txt"
ga = gastop.GenAlg(config_file_path)
ga.initialize_population(pop_size=1e4)
best_truss, history = ga.run(num_generations=100, progress_display=1, num_threads=4)

Contribute

	Issue Tracker: https://github.com/f0uriest/GASTOp/issues

	Source Code: https://github.com/f0uriest/GASTOp/

	Documentation: https://gastop.readthedocs.io/

License

The project is licensed under the GNU GPLv3 license.

GASTOp Manual

	Quickstart
	Installation

	Usage

	Contribute

	License

	Installation
	From PyPI

	From GitHub

	Usage
	Command Line

	Python Package

	Config File Formatting and Options
	Required Parameters

	Optional Parameters

	Properties Parsing

	API Documentation
	Crossover

	Evaluator

	FitnessFunction

	GenAlg

	Mutator

	Progress Monitor

	Selector

	Truss

	encoders

	utilities

	Examples
	Pyramid Example Configuration File

	Pyramid Example Results

	Cantilever Example Results

Quickstart

GASTOp is a Genetic Algorithm for Structural design and Topological Optimization.
Given a set of boundary conditions such as applied loads and fixtures, it will design a structure to support those loads while minimizing weight and deflections and maximize factor of safety.

Installation

Install gastop by running:

$ pip install gastop

Usage

Look how easy it is to use:

import gastop
config_file_path = "./path_to_config_file.txt"
ga = gastop.GenAlg(config_file_path)
ga.initialize_population(pop_size=1e4)
best_truss, history = ga.run(num_generations=100, progress_display=1, num_threads=4)

Contribute

	Issue Tracker: https://github.com/f0uriest/GASTOp/issues

	Source Code: https://github.com/f0uriest/GASTOp/

	Documentation: https://gastop.readthedocs.io/

License

The project is licensed under the GNU GPLv3 license.

Installation

gastop can either be install from PyPI, or directly by cloning the git repository and installing manually.

From PyPI

The easiest way to install gastop is to use pip to install from PyPI:

$ pip install gastop

This will install the base package, and shortcuts to use gastop from the command line. However, this will not install additional components such as the test suite and sample config files.

From GitHub

gastop can also be built from source by cloning the git repository.

$ git clone https://github.com/f0uriest/GASTOp.git

Once cloned, it can be installed by running

$ python setup.py install

from within the repository home folder. This will install the base package and command line shortcut. The git repository also contains the test suite and sample config files. The test suite can be run from the main folder with

$ python -m pytest

Please note that the tests may take several minutes to run.

Usage

gastop can either be run from the command line, or used in a python script.

Command Line

If it was installed from PyPI using pip, it can be run from the command line as:

$ gastop <config_file_path>

If the code was cloned from github instead, the normal commandline shortcut will not be installed.
It can still be run from the repository main directory as:

$ python -m gastop <config_file_path>

In either case, additional arguments can be passed via the command line:

usage: gastop [-h] [-p] [-g] [-t] [-q | -d] config_path

positional arguments:
config_path file path to gastop config file

optional arguments:
-h, --help show this help message and exit
-p , --pop_size population size. If not specified, defaults to what is
 in config.
-g , --num_gens number of generations. If not specified, defaults to
 what is in config.
-t , --num_threads number of threads to use. If not specified, defaults to
 what is in config.
-q, --quiet hide progress display window
-d, --display show progress display window

Python Package

gastop can also be used from within python, either in a script or interactively.

import gastop
config_file_path = "./path_to_config_file.txt"
ga = gastop.GenAlg(config_file_path)
ga.initialize_population(pop_size=1e4)
best_truss, history = ga.run(num_generations=100, progress_display=1, num_threads=4)

For a full description of available commands and options, see the API Documentation

Config File Formatting and Options

The config file includes all the input parameters used to instantiate a
GenAlg() object. Certain parameters must be specified by the user, while other
more advanced parameters can be left blank for simplicity and will default to
reasonable values.

The config file is parsed as a nested dictionary. Each dictionary is
indicated by [dict], and nested dictionaries are indicated by nested
squared brackets, [[nested dict]]. Each dictionary contains multiple
arguments indicated by key: value. If the value is an integer, float,
or string, simply input the value without quotation marks. For instance,
key: 3, key: 3.14, or key: pi. If the value
is a numpy array, input the value as an array in list format, within single
quotes, like key: '[[3.14 3.14],[3.14 3.14]]'.

For instance, the config file:

[dict1]
key1: 3
key2: 3.14
[[sub_dict1]]
sub_key1: apples
[[sub_dict2]]
sub_key2: None
[dict2]
key3: '[[3.14 12.8],[6.7 88.9999]]'

would be parsed, forming the dictionary:

{'dict1':
 {'key1':3,
 'key2':3.14,
 'sub_dict1':{'sub_key1':'apples'},
 'sub_dict2':{'sub_key2':None}},
 'dict2':
 {'key3':array([[3.14 12.8],[6.7 88.9999]])}}

Required Parameters

General Parameters

[general] contains the following parameters:

	user_spec_nodes

	(nx3 numpy array of floats) User-specified nodes (nodes with provided loads and
 displacement boundary conditions) in the format '[[x1 y1 z1],[x2 y2 z2],...,[xn yn zn]]'.

	loads

	(nx6 numpy array of floats) The forces and moments acting on each user-specified
 node in the format
 '[[Fx1,Fy1,Fz1,Mx1,My1,Mz1][Fx2,Fy2,Fz2,Mx2,My2,Mz2],...,[Fxn,Fyn,Fzn,Mxn,Myn,Mzn]]'.

	fixtures

	(nx6 numpy array of ints) The translational and rotational displacements for each
 user-specified node in the format '[[tx1,ty1,tz1,rx1,ry1,rz1],[tx2,ty2,tz2,rx2,ry2,rz2],...,[txn,tyn,tzn,rxn,ryn,rzn]]'.
 Here tx1 is the translational degree of freedom in the x direction of the first
 user-specified node, and rx1 is the rotational degree of freedom about the x-axis
 of the first user-specified node. A 1 indicates fixed, while a 0 indicates
 the node is free to move along or about the corresponding degree of freedom.

	num_rand_nodes

	(int) Maximum number of random nodes.

	num_rand_edges

	(int) Maximum number of random edges.

	properties_path

	(str) Path to the properties CSV, relative to the location of the config file. For example, ../properties.csv.

	domain

	(3x2 numpy array of floats) Allowable domain in the format
 '[[xmin xmax],[ymin ymax],[zmin zmax]]'.

Fitness Function Parameters

[fitness_params] contains the following parameters (see fitness_function [https://gastop.readthedocs.io/en/latest/api.html#fitnessfunction]):

	equation

	(str) Method for calculating fitness. Options: weighted_sum, sphere, rosenbrock, rastrigin.

	parameters

	(dict) Additional fitness function parameters.

	parameters[‘goal_fos’]

	(int) Desired factor of safety.

	parameters[‘critical_nodes’]

	(1xn numpy array of ints) Array of nodes numbers for which deflection should be minimized. If empty, defaults to all.

	parameters[‘w_fos’]

	(float) Penalty weight for low fos. Only applied if truss.fos < goal_fos.

	parameters[‘w_mass’]

	(float) Penalty applied to mass. Relative magnitude of w_mass and w_fos determines importance of minimizing mass vs maximizing fos.

	parameters[‘w_deflection’]

	(float) Penalty applied to deflections.
If scalar, applies the same penalty to all critical nodes.
Can also be an array the same size as critical_nodes in
which case different penalties will be applied to each node.

Evaluator Parameters

[evaluator_params] contains the following parameters (see evaluator [https://gastop.readthedocs.io/en/latest/api.html#evaluator]):

	struct_solver

	(str) Method for solving truss. Options: mat_struct_analysis_DSM Default: mat_struct_analysis_DSM

	mass_solver

	(str) Method of calculating the mass of a truss. Options: mass_basic Default: mass_basic

	interferences_solver

	(str) Method of determining interferences. Options: blank_test, interference_ray_tracing Default: blank_test

	cost_solver

	(str) Method of calculating the cost of a truss. Options: cost_calc Default: cost_calc

Genetic Algorithm Parameters

[ga_params] contains the following parameters (see gen_alg [https://gastop.readthedocs.io/en/latest/api.html#genalg]):

	num_threads

	(int) Number of threads. If equal to one, the GenAlg.run() method will execute in serial. If greater than one, it will run in parallel.

	pop_size

	(int) Number of trusses in each generation.

	num_generations

	(int) Number of generations to run.

	num_elite

	(int) Number of fittest trusses to carry over to the next generation without modification.

	percent_mutation

	(float) Percent of trusses in the next generation (after subtracting elites) to be derived from mutation of current trusses.

	percent_crossover

	(float) Percent of trusses in the next generation (after subtracting elites) to be derived from crossover of current trusses.

	save_frequency

	(int) Number of generations after which the population and config are saved to .json files.

	save_filename_prefix

	(str) Prefix for the save filenames. For example, save_.

Progress Monitor Parameters

[monitor_params] contains the following parameters (see progress_monitor [https://gastop.readthedocs.io/en/latest/api.html#progress-monitor]):

	progress_fitness

	(bool) Progress monitor display mode, if true displays best fitness score of the population each generation.

	progress_truss

	(bool) Progress monitor display mode, if true displays the truss with the best fitness score each generation.

Optional Parameters

Random Generation Parameters

[random_params] contains the following parameters:

Crossover Parameters

[crossover_params] contains the following parameters (see crossover [https://gastop.readthedocs.io/en/latest/api.html#crossover]):

	node_crossover_method

	(str) Method for performing node crossover. Options: uniform_crossover, single_point_split, two_points_split Default: uniform_crossover

	edge_crossover_method

	(str) Method for performing edge crossover. Options: uniform_crossover, single_point_split, two_points_split Default: uniform_crossover

	property_crossover_method

	(str) Method for performing edge crossover. Options: uniform_crossover, single_point_split, two_points_split Default: uniform_crossover

	node_crossover_params

	(dict) Additional node crossover parameters.

	edge_crossover_params

	(dict) Additional edge crossover parameters.

	property_crossover_params

	(dict) Additional property crossover parameters.

Mutator Parameters

[mutator_params] contains the following parameters (see mutator [https://gastop.readthedocs.io/en/latest/api.html#mutator]):

	node_mutator_method

	(str) Method for performing node mutation. Options: gaussian, pseudo_bit_flip, shuffle_index Default: gaussian

	edge_mutator_method

	(str) Method for performing edge mutation. Options: gaussian, pseudo_bit_flip, shuffle_index Default: pseudo_bit_flip

	property_mutator_method

	(str) Method for performing property mutation. Options: gaussian, pseudo_bit_flip, shuffle_index Default: pseudo_bit_flip

	node_mutator_params

	(dict) Additional node mutator parameters.

	node_mutator_params[‘std’]

	(float) Standard deviation for mutation. If array-like,
std[i] is used as the standard deviation for array[:,i].

	edge_mutator_params

	(dict) Additional edge mutator parameters.

	edge_mutator_params[‘proportions’]

	(float) Probability of a given entry being mutated.

	property_mutator_params

	(dict) Additional property mutator parameters.

	property_mutator_params[‘proportions’]

	(float) Probability of a given entry being mutated.

Selector Parameters

[selector_params] contains the following parameters (see selector [https://gastop.readthedocs.io/en/latest/api.html#selector]):

	method

	(str) Method for performing selection. Options: inverse_square_rank_probability, tournament Default: inverse_square_rank_probability

	tourn_size

	(int) The number of truss indices in each tournament. Must be less than 32.

	tourn_prob

	(float) The probability of the fittest truss in a tournament to be selected.

Properties Parsing

While parsing the config file, GASTOp will read the path to a file that contains the user-specified property information from a CSV file. The file exists by default as properties.csv with a few available material options:

	beam

	material

	OD (m)

	ID (m)

	elastic_modulus (Pa)

	yield_strength (Pa)

	dens (kg/m^3)

	poisson_ratio

	cost ($/m)

	0

	steel

	0.025

	0.02

	200000000000

	250000000

	8050

	0.3

	1

	1

	steel

	0.012

	0.01

	200000000000

	250000000

	8050

	0.3

	0.75

	2

	aluminum

	0.025

	0.02

	69000000000

	95000000

	2700

	0.32

	2

	3

	aluminum

	0.012

	0.01

	69000000000

	95000000

	2700

	0.32

	1.5

	4

	2024 aluminum

	0.042

	0.032

	69000000000

	276000000

	2700

	0.32

	3

Adding additional materials is as simple as adding a row to the default file, with all values separated by commas. One could also alternatively create a new properties file, duplicating the format of the default, replacing all material data, and specifying the path to the new properties file in the config file.

API Documentation

Crossover

	
class gastop.crossover.Crossover(crossover_params)

	Mixes attributes belonging to two different parents to produce two children with
specific characteristics from both parents.

When creating a new Crossover() object, it must be initialized with dictionary
crossover_params (containing crossover method). The Crossover() object can
then be used as a function that produces children according to the specified
crossover method, such as uniform_crossover, single_point_split or two_points_split.

	
__call__(truss_1, truss_2)

	Calls a crossover object on two trusses to combine them.

Crossover object must have been instantiated specifying which
methods to use.

	Parameters

	
	truss_1 (Truss object) – First truss to be combined.

	truss_2 (Truss object) – Second truss to be combined.

	Returns

	child_1, child_2 (Truss objects) – Children trusses produced by crossover.

	
__init__(crossover_params)

	Creates a Crossover object.

Once instantiated, the Crossover object can be called as a function
to combine two trusses using the specified methods and parameters.

	Parameters

	crossover_params (dict) – Dictionary containing:

	'node_crossover_method' (str): Name of method to use for
node crossover.

	'edge_crossover_method' (str): Name of method to use for
edge crossover.

	'property_crossover_method' (str): Name of method to use
for property crossover.

	'user_spec_nodes' (ndarray): Array of user specified nodes
that should be passed on unaltered.

	Returns

	Crossover callable object.

	
static single_point_split(array_1, array_2)

	Performs a single point split crossover between two parents

The single split crossover method takes specific information from two parents
and returns two children containing characteristics from both parents.
In order to achieve this, it chooses a random point and splits the two
parents into two different parts. Then it merges the first half of the
first parent with the second half of the second parent and vice versa.

	Parameters

	
	array_1 (ndarray) – Numpy array containing information for parent 1.

	array_2 (ndarray) – Numpy array containing information for parent 2.

	Returns

	child1, child2 (ndarrays) – Numpy arrays containing information for children.

	
static two_points_split(array_1, array_2)

	Takes specific values of two parents and return two children containing
characteristics from both parents.

The two points split method chooses two random points and splits the two
parents into three different parts. Then, it replaces the central part of
the first parent with the central part of the second parent.

	Parameters

	
	array_1 (ndarray) – Numpy array containing information for parent 1.

	array_2 (ndarray) – Numpy array containing information for parent 2.

	Returns

	child_1, child_2 (ndarrays) – Numpy arrays containing information for children.

	
static uniform_crossover(parent_1, parent_2)

	Performs a uniform crossover on the two parents

The uniform crossover method creates two child arrays by randomly mixing
together information taken from two parent arrays. To do this, the uniform
crossover method creates two arrays of ones and zeros -one being the complement
of the other- with the same shape as the parent arrays. The first array
is multiplied with parent1 and the complementary array is multiplied with
parent2 before adding the results together to make child1. The exact
opposite multiplication is done to make child2.

	Parameters

	
	parent_1 (ndarray) – Numpy array containing information for parent 1.

	parent_2 (ndarray) – Numpy array containing information for parent 2.

	Returns

	child1, child2 (ndarrays) – Numpy arrays containing information for
children.

Evaluator

	
class gastop.evaluator.Evaluator(struct_solver, mass_solver, interferences_solver, cost_solver, boundary_conditions, properties_dict)

	Implements various methods for scoring the truss in different areas.

Methods include calculations of mass, factor of safety, deflections, and
interference with user specified areas.

The class is designed to be instantiated as an Evaluator object which will
fully evaluate a Truss object using specified methods and parameters.

	
__call__(truss)

	Computes mass, deflections, etc, and stores it in truss object.

Used when an Evaluator object has been created with the
methods to be used and any necessary parameters.

	Parameters

	truss (Truss object) – truss to be evaluated.

	Returns

	None

	
__init__(struct_solver, mass_solver, interferences_solver, cost_solver, boundary_conditions, properties_dict)

	Creates an Evaluator callable object.

Once created, the Evaluator can be called on a Truss object to
calculate and assign mass, factor of safety, deflections, etc
to the truss.

	Parameters

	
	struct_solver (str) – Name of the method to be used for structural
analysis and calculating fos and deflections, as a string.
e.g. 'mat_struct_analysis_DSM'.

	mass_solver (str) – Name of the method to be used to calculate mass.
e.g. 'mass_basic'.

	interferences_solver (str) – Name of method to be used to determine
interferences. e.g. 'interferences_ray_tracing'.

	boundary_conditions (dict) – Dictionary containing:

	'loads' (ndarray): Array of loads applied to the structure.
First index corresponds to the node where the load is applied,
second index is the force in x,y,z and moment about x,y,z,
third index is for multiple loading scenarios.

	'fixtures' (ndarray): Array of flags denoting whether a node
is fixed or free. First index corresponds to the node, the
second index corresponds to fixing displacements in x,y,z
and rotations about x,y,z. The third index corresponds to
multiple loading scenarios with different fixtures for each.
Values of the array are 0 (free) or 1 (fixed).

	properties_dict (dict) – Dictionary containing beam properties.

	should be 1D arrays, with length equal to the number of (Entries) –

	options. Each entry in the array is the value of the key (beam) –

	for the specified beam type. Properties include (property) –
	'OD': Outer diameter of the beam, in meters.

	'ID': Inner diameter of the beam, in meters.

	'elastic_modulus': Elastic or Young’s modulus of the
material, in Pascals.

	'yield_strength': Yield or failure strength of the
material, in Pascals.

	'shear_modulus': Shear modulus of the material,
in Pascals.

	'poisson_ratio': Poisson ratio of the material,
dimensionless.

	'x_section_area': Cross sectional area of the beam,
in square meters.

	'moment_inertia_y': Area moment of inertia about beams
y axis, in meters^4.

	'moment_inertia_z': Area moment of inertia about beams
z axis, in meters^4.

	'polar_moment_inertia': Area moment of inertia about beams
polar axis, in meters^4.

	'dens': Density of the material, in kilograms per cubic meter.

	cost_solver (str) – Name of the method to be used to calculate cost.
e.g. 'cost_calc'.

	Returns

	callable Evaluator object.

	
static blank_test(truss, *args, **kwargs)

	Blank function used for testing GA when no evaluation needed

	Parameters

	truss (Truss object) – Dummy Truss object, no attributes required.

	Returns

	2-element tuple of (None, None)

	
static cost_calc(truss, properties_dict)

	Calculates cost of structure

Considers only members, does not account for additional cost due
to welds or connection hardware.

	Parameters

	truss – Truss to be evaluated. Must have nodes,
edges, and properties defined.

	Returns

	cost (float) – Cost of the structure in $.

	
static interference_ray_tracing(truss)

	Not implemented yet.

TODO: method to determine if truss members are crossing into
user specified areas. Used when a structure must be designed around
something, such as a passenger compartment or other design components.

	
static mass_basic(truss, properties_dict)

	Calculates mass of structure

Considers only members, does not account for additional mass due
to welds or connection hardware.

	Parameters

	truss – Truss to be evaluated. Must have nodes,
edges, and properties defined.

	Returns

	mass (float) – Mass of the structure in kilograms.

	
static mat_struct_analysis_DSM(truss, boundary_conditions, properties_dict)

	Calculates deflections and stresses using direct stiffness method.

Constructs global stiffness matrix from nodes and connections,
and computes deflections under each loading scenario.
From deflections, calculates internal forces, stresses, and factor
of safety in each member under each loading scenario

	Parameters

	
	truss (Truss object) – Truss to be evaluated. Must have nodes,
edges, and properties defined.

	boundary_conditions (dict) – Dictionary containing:

	'loads' (ndarray): Array of loads applied to the structure.
First index corresponds to the node where the load is applied,
second index is the force in x,y,z and moment about x,y,z,
third index is for multiple loading scenarios.

	'fixtures' (ndarray): Array of flags denoting whether a node
is fixed or free. First index corresponds to the node, the
second index corresponds to fixing displacements in x,y,z
and rotations about x,y,z. The third index corresponds to
multiple loading scenarios with different fixtures for each.
Values of the array are 0 (free) or 1 (fixed).

	properties_dict (dict) – Dictionary containing beam properties.

	should be 1D arrays, with length equal to the number of (Entries) –

	options. Each entry in the array is the value of the key (beam) –

	for the specified beam type. Properties include (property) –
	'OD': Outer diameter of the beam, in meters.

	'ID': Inner diameter of the beam, in meters.

	'elastic_modulus': Elastic or Young’s modulus of the
material, in Pascals.

	'yield_strength': Yield or failure strength of the
material, in Pascals.

	'shear_modulus': Shear modulus of the material,
in Pascals.

	'poisson_ratio': Poisson ratio of the material,
dimensionless.

	'x_section_area': Cross sectional area of the beam,
in square meters.

	'moment_inertia_y': Area moment of inertia about beams
y axis, in meters^4.

	'moment_inertia_z': Area moment of inertia about beams
z axis, in meters^4.

	'polar_moment_inertia': Area moment of inertia about beams
polar axis, in meters^4.

	'dens': Density of the material, in kilograms per cubic meter.

	Returns

	2-element tuple containing –

	fos (ndarray): 2D array of factor of safety values. First index
corresponds to members, second index corresponds to different
loading scenarios. Factor of safety is defined as the materials
yield strength divided by the von Mises stress in the member.
If structure is statically indeterminate under a given loading
scenario, fos will be zero.

Factor of safety in member i under loading j is fos[i, j]

	deflections (ndarray): 3D array of node deflections.
Distances in meters, angles in radians. First index corresponds
to node number, second index is deflections in global x,y,z
coordinates, and rotations about global x,y,z axes. The third
axis corresponds to different loading scenarios.

Deflection at node i under loading j is deflections[i, :, j] =
[dx, dy, dz, d_theta_x, d_theta_y, d_theta_z]

FitnessFunction

	
class gastop.fitness.FitnessFunction(equation, parameters)

	Implements fitness functions for computing fitness scores.

The fitness function assigns a single value to each truss based
on various parameters, so that comparisons between trusses can be made.

The class is designed to be instantiated as a FitnessFunction object
which operates on Truss objects to assign a fitness score, though methods
from the class may also be called directly.

	
__call__(truss)

	Computes fitness score and stores it in truss object.

Used when a FitnessFunction object has been created with the
method to be used and any necessary parameters.

	Parameters

	truss (Truss object) – truss to be scored.

	Returns

	None

	
__init__(equation, parameters)

	Creates a FitnessFunction object

Once created, the object acts like a function and can be called on a Truss
object to assign it a fitness score.

	Parameters

	
	equation (string) – The name of the method to be used to compute
fitness, as a string. eg, 'weighted_sum' or
'rosenbrock'.

	parameters (dict) – Dictionary of keyword parameter values for the
method specified in equation.

	Returns

	FitnessFunction callable object

	
static rastrigin(truss)

	n-dimensional Restrigin function.

Global min at x=0 where f=0.
This method is primarily supplied for testing of the genetic algorithm,
and should not be used for structural design.

	Parameters

	truss (Truss object) – only uses truss object as container for
nodes. No other attributes needed.

	Returns

	float – fitness score. Computed as
\(f(x) = 10n + \Sigma_{i=1}^n (x_i^2 -10\cos{(2 \pi x_i)})\)

\(n\) is determined from size of nodes array,
\(x_i\) are entries of node array.

	
static rosenbrock(truss)

	n-dimensional Rosenbrock function.

Sum of n/2 2D Rosenbrock functions.
Global min at x=1 where f=0.
This method is primarily supplied for testing of the genetic algorithm,
and should not be used for structural design.

	Parameters

	truss (Truss object) – only uses truss object as container for
nodes. No other attributes needed.

	Returns

	float – Fitness score. Computed as
\(f(x) = \Sigma_{i=1}^{n/2}(100*(x_{2i-1}^2 - x_{2i}^2)^2 + (x_{2i-1} - 1)^2)\)

\(n\) is determined from size of nodes array,
\(x_i\) are entries of node array.

	
static sphere(truss)

	Sum of squares of node array elements. aka, sphere function.

Global min at x = 0 where f = 0.
This method is primarily supplied for testing of the genetic algorithm,
and should not be used for structural design.

	Parameters

	truss (Truss object) – only uses truss object as container for
nodes. No other attributes needed.

	Returns

	float – Fitness score. Computed as
\(f(x) = \Sigma_{i=1}^n x_i^2\)

\(n\) is determined from size of nodes array,
\(x_i\) are entries of node array.

	
static weighted_sum(truss, goal_fos, critical_nodes, w_fos, w_mass, w_deflection)

	Computes fitness score using a weighted sum of parameters.

	Parameters

	
	truss (Truss object) – truss to be scored. Must have mass,
fos, and deflections attributes defined (for example, by using evaluator).

	goal_fos (float >= 0) – Desired factor of safety. Trusses with
a smaller fos will be penalized according to w_fos.

	critical_nodes (int, array) – Array of nodes #s for which
deflection should be minimized. If empty, defaults to all.

	w_fos (float >= 0) – Penalty weight for low fos. Only applied
if truss.fos < goal_fos.

	w_mass (float >= 0) – Penalty applied to mass. Relative
magnitude of w_mass and w_fos determines importance of

minimizing mass vs maximizing fos.

	w_deflection (float >=0, array) – Penalty applied to deflections.
If scalar, applies the same penalty to all critical nodes.
Can also be an array the same size as critical_nodes in
which case different penalties will be applied to each node.

	Returns

	float – Fitness score. Computed as:
\(f = w_{m} m + w_{fos}\max{(\mathrm{fos}_{goal}-\mathrm{fos}_{min}, 0)}
+ w_{def} ||\mathrm{deflections}||_2\)

\(m\) is the mass of the stucture, \(\mathrm{fos}_{min}\) is the
lowest fos for the structure under all load conditions.
If \(\mathrm{fos}_{min} > \mathrm{fos}_{goal}\), no fos penalty is applied, so f
depends only on mass and deflections.

GenAlg

	
class gastop.genalg.GenAlg(config)

	Creates, updates, tracks, loads, and saves populations.

The GenAlg Class orchestrates all of the other functions that perform
functions to change the population and its elements. In this case, such
classes are crossover, evaluator, encoders, fitness, mutator, selector, and
truss.

In brief, GenAlg calls many other functions in order to create a generation
which is then analyzed to fully determine its relavant properties. These
properties are then used to create a new generation and the process repeats
until a final solution is reached.

	
__init__(config)

	Creates a GenAlg object

Once created, the object will store all of the relavant information
about a population. The object also contains the necessary functions to
modify itself, evaluate its ‘goodness’, and then create new members for
the next generation.

	Parameters

	
	Either –

	config (str) – Configuration dictionary with parameters, such as one
created by gastop.utilities.init_file_parser()

	config – File path to config file to be parsed. Used
instead of passing config dictionary directly.

	Returns

	GenAlg callable object

	
generate_random()

	Generates and returns new truss objects with random properties

The random method first determines the desired ranges of all values
that will be calculated. Then, random numbers for the node locations,
connections, and properties are all determined with the numpy.random
methods.

	Parameters

	None –

	Returns

	(Truss object) – Truss object with the newly determined values

	
initialize_population(pop_size=None)

	Initializes population with randomly creates Truss objects.

Population is stored in instance of GenAlg object as population attribute.

	Parameters

	pop_size (int) – size of the population. If not specified, it
defaults to what is in the config dict.

	Returns

	None

	
static load_state(dest_config='config.json', dest_pop='population.json')

	Loads the current population and config settings from JSON files.

	Parameters

	
	dest_config (string) – Path to config data file.

	dest_pop (string) – Path to population data file.

	Returns

	ga (GenAlg object)

	
run(num_generations=None, progress_fitness=None, progress_truss=None, num_threads=None)

	Runs the genetic algorithm over all populations and generations

	Parameters

	
	num_generations (int) – number of generations to be performed.

	progress_fitness (bool) – Whether to show display window showing fitness score vs generation.

	progress_truss (bool) – Whether to show display window showing truss evolution.

	num_threads (int) – number of threads the multiprocessing should employ. If zero
or None, it will use the number returned by os.cpu_count().

	Returns

	2-element tuple containing –

	best (Truss): The Truss with the best fitness score after elapsed generations.

	pop_progress (dict): Dictionary of dictionaries containing:

	'Generation 1' (dict): Dictionary of info about generation 1.

	'Generation 2' (dict): Dictionary of info about generation 2, etc.

	
save_state(dest_config='config.json', dest_pop='population.json')

	Saves the current population and config settings to JSON files.

	Parameters

	
	dest_config (string) – Path to save config data file. If file
doesn’t exist, creates it.

	dest_pop (string) – Path to save population data file. If file
doesn’t exist, creates it.

	Returns

	None

	
update_population()

	Creates new population by performing crossover and mutation, as well
as taking elites and randomly generating trusses.

First sorts the population by fitness score, from most fit to least fit.
Creates selector object from population and method. Calls selector to
get list of parents for crossover and mutation. Performs crossover and
mutation.

	Parameters

	None –

	Returns

	None

Mutator

	
class gastop.mutator.Mutator(mutator_params)

	Randomly mutates the whole/specific attributes belonging to the parents.

When creating a new Mutator() obejct, it must be initialized with dictionary
mutator_params (containing mutation method). The Mutator() Object can then be
used as a function that mutates parents according to the specified method,
such as gaussian, pseudo_bit_flip and shuffle_index.

	
__call__(truss)

	Calls a mutator object on a truss to change it.

Mutator object must have been instantiated specifying which
methods to use.

	Parameters

	truss (Truss object) – Truss to be mutated.

	Returns

	child (Truss object) – Child truss produced by mutation.

	
__init__(mutator_params)

	Creates a Mutator object.

Once instantiated, the Mutator object can be called as a function to
alter the parent array using the specified methods and parameters

	Parameters

	mutator_params (dict) – Dictionary containing:

	'node_mutator_method' (str): Name of method to use for
node mutation.

	'edge_mutator_method' (str): Name of method to use for
edge mutation.

	'property_mutator_method' (str): Name of method to use
for property mutation.

	'node_mutator_params' (dict): Dictionary of parameters
for node method.

	'edge_mutator_params' (dict): Dictionary of parameters
for edge method.

	'property_mutator_params' (dict): Dictionary of parameters
for property method.

	'user_spec_nodes' (ndarray): Array of user specified nodes
that should be passed on unaltered.

	Returns

	Mutator callable object.

	
static gaussian(array, std, boundaries, int_flag)

	Performs a gaussian mutation on the given parent array

The gaussian mutator method creates a child array by mutating the given parent
array. The mutation is done by adding a random value from the gaussian distribution
with a user specified standard deviation to each of the elements in the parent
array. Since values need to be within a specified boundary, any elements that are
mutated out of bounds on one side are looped inside the other side by the same
amount, assuming a periodic boundary.

	Parameters

	
	array (ndarray) – Numpy array containing the information for the parent array that
is being mutated.

	std (float or array-like) – Standard deviation for mutation. If array-like,
std[i] is used as the standard deviation for array[:,i].

	boundaries (array-like) – Domain of allowable values. If a value is mutated
outside this region, it is looped back around to the other side.

	int_flag (bool) – flag specifying whether output should be ints.

	Returns

	new_array (ndarray) – Numpy array containing information for the mutated child.

	
static pseudo_bit_flip(parent, boundaries, proportions, int_flag)

	Mutate specific values of the parent and return the mutant child.

The pseudo_bit_flip method creates a random binary matrix with a fixed
ratio of 1s and 0s as specified by the user. It also creates another random
matrix with elements within the domain specified by the user. It then replaces
the elements from the original matrix with the corresponding elements in
the new matrix only if the corresponding element in the binary matrix is 1.

	Parameters

	
	parent (ndarray) – Numpy array containing the information for the parent array that
is being mutated.

	boundaries (array-like) – Domain of allowable values.

	proportions (float) – Ratio of 1s and 0s in the binary matrix used in
the pseudo bit flip algorithm

	int_flat (bool) – flag specifying whether output should be ints.

	Returns

	child (numpy array) – Numpy array containing information for the mutated child.

	
static shuffle_index(parent)

	Mutate the parent by swapping an index with another within the same array.

First, the shuffle_index method creates two random matrices. It then compares
the two matrices. If the entry in the first matrix is greater than the
entry in the second matrix, then it permutes the corresponding elements in
the original matrix.

	Parameters

	parent (numpy array) – Numpy array containing the information for the parent array that
is being mutated.

	Returns

	child (numpy array) – Numpy array containing information for the mutated child.

Progress Monitor

	
class gastop.progmon.ProgMon(progress_fitness, progress_truss, num_generations, domain=None, loads=None, fixtures=None)

	Plots fitness score or truss evolution and stores population statistics.

This class takes in the current sorted population and displays information
based on the user requests. If truss monitoring is requested it calls the
plot method. The population stats are returned via GenAlg and written to a
json file, allowing the user to plot the evolution after the optimization is
complete.

	
__init__(progress_fitness, progress_truss, num_generations, domain=None, loads=None, fixtures=None)

	Creates a ProgMon object

Once created, the object will store all of the relavant information
about a progess monitor. The figures are also initialized upon
object instatiation.

	Parameters

	
	progress_fitness (boolean) – if true the minimum fitness score of the
population is plotted each iteration

	progress_truss (boolean) – if true the truss corresponding to the
minimum fitness score is displayed each iteration

	num_generations (integer) – indicates the number of generations, used
when initializing the fitness figure

	domain (numpy array) – indicates bounds of design area, used when
progress_truss is true

	loads (numpy array) – indicates magnitude and direction of loads
applied to user_spec_nodes, used when progress_truss is true

	fixtures (numpy array) – indicates fixed DOFs of user_spec_nodes,
used when progress_truss is true

	Returns

	Nothing

	
progress_monitor(current_gen, population)

	Updates progress monitor plots

Function is passed the sorted population and plots either the current
generation’s best fitness score, best truss, or both. If the truss is
displayed, the plot method of the truss object is called but passed the
figure instantiated in the init method.

	Parameters

	
	progress_fitness (boolean) – if true the minimum fitness score of the
population is plotted each iteration

	progress_truss (boolean) – if true the truss corresponding to the
minimum fitness score is displayed each iteration

	num_generations (integer) – indicates the number of generations, used
when initializing the progress_fitness figure

	domain (numpy array) – indicates bounds of design area, used when
progress_truss is true

	loads (numpy array) – indicates magnitude and direction of loads
applied to user_spec_nodes, used when progress_truss is true

	fixtures (numpy array) – indicates fixed DOFs of user_spec_nodes,
used when progress_truss is true

	Returns

	Nothing

Selector

	
class gastop.selector.Selector(sel_params)

	Selects parents to be used for crossover and mutation.

When creating a new Selector() obejct, must be initialized with dictionary
sel_params (containing selection method). Object can then be used as a
function that selects parents according to the specified method.

	
__call__(num_parents, population)

	Calls selector object on a population to get parent indices.

	Parameters

	
	num_parents (int) – Number of parents to select.

	population (list) – Population of trusses to select from,
must be sorted by fitness score in ascending order.

	Returns

	parents (ndarray) – Array of indices of parents in population list.

	
__init__(sel_params)

	Creates a Selector object.

	Parameters

	sel_params (dict) – Dictionary containing:

	'method' (str): Name of chosen selection method.

	'method_params' (dict): Dictionary of parameters required by chosen method.

	Returns

	selector (Selector object)

	
static inverse_square_rank_probability(num_parents, population)

	Selects parents according to inverse square rank method.

Creates a cdf, with each entry the cumulative sum of 1/sqrt(N)
for N = 1, … Random values are then produced between the largest and
smallest elements of the list. Each parent is chosen as the index in the
cdf that the corresponding random value falls. In this way, the most
probable parents are those with the highest fitness scores.

	Parameters

	
	num_parents (int) – The number of parents to select.

	population (list) – List of Truss objects that constitutes the
current generation.

	Returns

	parents (ndarray) – Numpy array of indices in population
corresponding to selected parents.

	
static tournament(num_parents, population, tourn_size, tourn_prob)

	Selects parents according to tournament method.

Randomly selects truss indices from population in groups called
tournaments according to “tourn_size.” Each tournament is then sorted
by index (lower means more fit) in ascending order and a single index
from each tournament is selected. The selection from each tournament is
chosen probabilistically, assigning the first, most fit, index with
probability p = tourn_prob, and then subsequent indices by p*(1-p)^n.
The winners of each tournament are then returned as the parents array.

	Parameters

	
	num_parents (int) – The number of parents to select.

	population (list) – List of Truss objects that constitutes the
current generation.

	tourn_size (int) – Number of trusses to include in a given tournament.
Must be <= 31.

	tourn_prob (float) – Probability of selecting first index in each tournament.
Must be between 0 and 1.

	Returns

	parents (ndarray) – Numpy array of indices in population
corresponding to selected parents.

Truss

	
class gastop.truss.Truss(user_spec_nodes, rand_nodes, edges, properties, fos=None, deflection=None, mass=None, interference=None, cost=None, num_joints=None, fitness_score=None)

	Implements the Truss object, which is the fundamental object/data
type in GASTOp.

Each truss is defined by a collection of nodes (points in x,y,z space),
edges (connections between nodes), and properties (material and geometric
properties of the connections between nodes).

A truss can also have assigned attributes such as factor of safety,
deflections, mass, cost, or fitness score. These attributes are calculated
based on the nodes, edges, and properties.

	
__init__(user_spec_nodes, rand_nodes, edges, properties, fos=None, deflection=None, mass=None, interference=None, cost=None, num_joints=None, fitness_score=None)

	Creates a Truss object

	Parameters

	
	user_spec_nodes (ndarray) – Array of user specified nodes, such as
where loads are applied or where the structure is supported.
Array shape should be nx3, where n is the number of specified
nodes. Each row should contain the x,y,z coordinates of a node.

	rand_nodes (ndarray) – Randomly generated nodes. No loads or supports
should be assigned to random nodes, as their position may change.
Array shape should be mx3 where m is the number of random
nodes. Each row should contain the x,y,z coordinates of a node.

	edges (ndarray) – Array of connections between nodes. Array shape
should be kx2, where k is the number of connections or beams
in the structure. Each row should be 2 integers, the first being
number of the starting node and the second being the ending node.
A value of -1 indicates no connection, and will be ignored.

	properties (ndarray) – Array of indices for beam properties. Array
shape should be a 1d array of length k, where k is the number of
connections or beams in the structure. Each entry should be an
integer index into the properties dictionary, with values
between [0, number of beam types].

	fos (ndarray) – Array of factor of safety values. Default None.

	deflection (ndarray) – Array of node deflections under load,
in meters. Default None.

	mass (float) – Mass of the structure, in kilograms. Default None.

	interference (float) – Total length of members passing through
user specified areas. Default None.

	cost (float) – Cost of the structure in dollars. Default None.

	num_joints (int) – Number of connections between members. Default None.

	fitness_score (float) – Fitness score of the truss. Default None.

	Returns

	Truss object.

	
__str__()

	Prints the truss to the terminal as a formatted array.

Prints node numbers and locations, edge numbers and connections, and
beam material property ID’s

If deflections, mass, fos, or cost are defined, they will be printed as well.

	Parameters

	None –

	Returns

	None

	
cleaned_params()

	Returns cleaned copies of node, edge, and property arrays.

	Parameters

	None –

	Returns

	3-element tuple containing –

	nodes (ndarray): Concatenation of user_spec_nodes and rand_nodes.

	edges (ndarray): Edges array after removing rows with -1 values.

	properties (ndarray): Properties corresponding to remaining edges.

	
mark_duplicates()

	Checks truss for duplicate edges or self connected nodes and marks them.

Any edge that connects a node to itself, or any duplicate edges are
changed to -1.

	Parameters

	None –

	Returns

	None

	
plot(domain=None, loads=None, fixtures=None, deflection=False, load_scale=None, def_scale=100, ax=None, fig=None, setup_only=False)

	Plots a truss object as a 3D wireframe

	Parameters

	
	self (Truss object) – truss to be plotted. Must have user_spec_nodes,
rand_nodes, edges defined.

	domain (ndarray) – (optional) axis limits in x,y,z, specified as a
3x2 array: [[xmin, xmax],[ymin,ymax],[zmin,zmax]].

	loads (ndarray) – (optional) Array of loads to be plotted as arrows.
Specified as nx6 array, each row corresponding to the load at
the node matching the row #. Load format:
[Fx,Fy,Fz,Mx,My,Mz]

	fixtures (ndarray) – (optional) Array of fixtures to be plotted as blobs.
Specified as an nx6 array, each row corresponding to fixtures at
the node matching the row #. Format:
[Dx,Dy,Dz,Rx,Ry,Rz] value of 1 means fixed in that direction,
value of zero is free.

	deflection (bool) – If True, deflections will be plotted superposed on
the undeformed structure. Relative size of deflections is governed
by def_scale.

	load_scale (float) – Size load vector arrows should be scaled by.

	def_scale (float) – Scaling for deflections. *def_scale*=1
means actual size, larger than 1 magnifies.

	ax (axis) – Axis to plot truss on, if an axis is passed to the
function, the function is being called by ProgMon and prog is
set to 1. If axis is none, a new one is created.

	fig (fig) – Figure belonging to the axis.

	setup_only (boolean) – If true, only the loads and fixtures are
plotted.

	Returns

	None

encoders

	
class gastop.encoders.ConfigEncoder(skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, default=None)

	Encodes config file in JSON format.

If the object is a numpy array, converts it to a list and appends ‘__numpy__’
metadata for decoding.

	
default(obj)

	Implement this method in a subclass such that it returns
a serializable object for o, or calls the base implementation
(to raise a TypeError).

For example, to support arbitrary iterators, you could
implement default like this:

def default(self, o):
 try:
 iterable = iter(o)
 except TypeError:
 pass
 else:
 return list(iterable)
 # Let the base class default method raise the TypeError
 return JSONEncoder.default(self, o)

	
class gastop.encoders.PopulationEncoder(skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, default=None)

	Encodes population file in JSON format.

If the object is a numpy array, converts it to a list and appends
‘__numpy__’ metadata for decoding. Handles that population is composed
of truss objects.

	
default(obj)

	Implement this method in a subclass such that it returns
a serializable object for o, or calls the base implementation
(to raise a TypeError).

For example, to support arbitrary iterators, you could
implement default like this:

def default(self, o):
 try:
 iterable = iter(o)
 except TypeError:
 pass
 else:
 return list(iterable)
 # Let the base class default method raise the TypeError
 return JSONEncoder.default(self, o)

	
gastop.encoders.numpy_decoder(dct)

	Decodes JSON files to config and population.

If the object is has ‘__numpy__’ metadata, converts it to a numpy array.

	Parameters

	dct (dict) – Dictionary in JSON file.

	Returns

	dct (dict) – Dictionary with numpy arrays decoded.

utilities

	
gastop.utilities.beam_file_parser(properties_path)

	Parses csv file of beam material properties

Each line of the properties file denotes one type of beam, with a specified
cross section and material properties.

Property entries should be formatted as:
beam #, material name, OD (m), ID (m), elastic_modulus (Pa),
yield_strength (Pa), density (kg/m^3), poisson_ratio, cost ($)

	Parameters

	properties_path (str) – Path to the properties csv file, relative to
the directory GASTOp is being executed from.

	Returns

	properties_dict (dict) – Dictionary of property values.
Each entry is an ndarray of the keyed property of each beam. For example,
properties_dict[‘dens’] is an ndarray of the density of each beam type.

	
gastop.utilities.init_file_parser(init_file_path)

	Parse init file for input parameters.

Creates ConfigObj object, which reads input parameters as a nested
dictionary of strings. The string are then converted to their correct types
using the ConfigObj walk method and a transform function. Defaults are then
set with if statements.

	Parameters

	init_file_path (string) – Path to the init file, relative to
the directory GASTOp is being executed from.

	Returns

	config (ConfigObj object) – Nested dicitonary of input parameters.

	
gastop.utilities.load_progress_history(path_progress_history='progress_history.json')

	Loads the population history (progress_history) from a JSON file.

	Parameters

	path_progress_history (string) – Path to progress_history data file.

	Returns

	progress_history (dict) – History of each generation, including generation
number, fittest truss, etc.

	
gastop.utilities.save_gif(progress_history, progress_fitness, progress_truss, animation_path, num_gens, config, gif_pause=0.5)

	Saves progress history to gif

Clears contents of folder specified then creates png of each generation of
the evolution and then combines the png’s into a gif. Accomplishes this by
creating progress monitor instance and passing it the truss object stored in
the progress history.

	Parameters

	
	progress_history (dictionary of dictionaries) – population statistics and
best truss from each generation.

	progress_fitness (boolean) – indicates whether to plot the fitness score.

	progress_truss (boolean) – indicates whether to plot the current truss.

	animation_path (string) – path to the file where the gif should be created.

	num_gens (integer) – total number of generations

	config (dictionary of dictionaries) – stores domain, loads, and fixtures

	gif_pause (float) – pause between images in the gif

	Returns

	Nothing

	
gastop.utilities.save_progress_history(progress_history, path_progress_history='progress_history.json')

	Saves the population history (progress_history) to a JSON file.

	Parameters

	
	progress_history (dict) – History of each generation, including generation
number, fittest truss, etc.

	path_progress_history (string) – Path to save progress_history data file. If file
doesn’t exist, creates it.

	Returns

	None

Examples

Pyramid Example Configuration File

[general]
user_spec_nodes = '[[0,-.5,0],[0,.5,0],[0,0,1],[2,0,0]]'
loads = '[[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,-10000,0,0,0]]'
fixtures = '[[1,1,1,1,1,1],[1,1,1,1,1,1],[1,1,1,1,1,1],[0,0,0,0,0,0]]'
num_rand_nodes = 10 # int
num_rand_edges = 10 # int
properties_path = 'gastop-config/properties.csv'
domain = '[[-1, -1, -1], [5, 1, 2]]'

[fitness_params]
equation = weighted_sum
 [[parameters]]
 goal_fos = 4
 critical_nodes = '[3]'
 w_fos = 10000
 w_mass = 1
 w_deflection = 100

[evaluator_params]
struct_solver = mat_struct_analysis_DSM
mass_solver = mass_basic
interferences_solver = blank_test
cost_solver = cost_calc

[ga_params]
num_threads = 1
pop_size = 1500
num_generations = 50
num_elite = 15
percent_mutation =
percent_crossover =
save_frequency = 5
save_filename_prefix = Recorded_States_

[monitor_params]
progress_fitness = True
progress_truss = True

optional stuff

[random_params]
rng_seed =

[crossover_params]
node_crossover_method =
edge_crossover_method =
property_crossover_method =
 [[node_crossover_params]]
 [[edge_crossover_params]]
 [[property_crossover_params]]

[mutator_params]
node_mutator_method =
edge_mutator_method =
property_mutator_method =
 [[node_mutator_params]]
 std =
 [[edge_mutator_params]]
 proportions =
 [[property_mutator_params]]
 proportions =

[selector_params]
method =
 [[method_params]]
 tourn_size =
 tourn_prob =

Pyramid Example Results

For this example there are three nodes that are fixed in all six degrees of
freedom at XYZ locations [0,-.5,0] , [0,.5,0] , [0,0,1]. A load is applied at
[2,0,0] in the negative Z direction with a magnitude of 10,000 N. The genetic
algorithm uses a population size of 1500, runs for 50 generations, and is
the structure is required to have a safety factor of four. The displacement is
minimized for node 3 which is the loaded node at [2,0,0]. To run this example
the command is as shown below:

$ gastop gastop-config/struct_making_test_init2.txt

The results of this simulation are:

[image: Simple Truss Optimization Result and Command Line Printout]
Here the fixed nodes are shown in green, the loads are shown in red, and the
truss is shown in black. The blue lines show how the truss deforms under the
load magnified by a factor of 50 to be visible. The evolution of the
optimization algorithm is shown here:

[image: Simple Truss Optimization Evolution]

Cantilever Example Results

For this example there are six nodes that are fixed in all six degrees of
freedom at XYZ locations [0,0,0], [0,0.001,1], [0,1.5,0], [0,1.5001,1], [0,3,0],
[0,3.0001,1]. Three loads are applied at [3,0,1], [3,1.5,1], [3,3,1] in the
negative Z direction, each with a magnitude of 1000 N. The genetic
algorithm uses a population size of 1000, runs for 250 generations, and is
the structure is required to have a safety factor of four. The displacement is
minimized for node 7 which is the middle loaded node at [3,1.5,1]. To run this
example the command is as shown below:

$ gastop gastop-config/init_cantilevered_test.txt

The results of this simulation are:

[image: Cantilevered Optimization Result and Command Line Printout]
Here the fixed nodes are shown in green, the loads are shown in red, and the
truss is shown in black. The blue lines show how the truss deforms under the
load magnified by a factor of 50 to be visible.

Index

 _
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | W

_

 	
 	__call__() (gastop.crossover.Crossover method)

 	(gastop.evaluator.Evaluator method)

 	(gastop.fitness.FitnessFunction method)

 	(gastop.mutator.Mutator method)

 	(gastop.selector.Selector method)

 	__init__() (gastop.crossover.Crossover method)

 	(gastop.evaluator.Evaluator method)

 	(gastop.fitness.FitnessFunction method)

 	(gastop.genalg.GenAlg method)

 	(gastop.mutator.Mutator method)

 	(gastop.progmon.ProgMon method)

 	(gastop.selector.Selector method)

 	(gastop.truss.Truss method)

 	
 	__str__() (gastop.truss.Truss method)

B

 	
 	beam_file_parser() (in module gastop.utilities)

 	
 	blank_test() (gastop.evaluator.Evaluator static method)

C

 	
 	cleaned_params() (gastop.truss.Truss method)

 	ConfigEncoder (class in gastop.encoders)

 	
 	cost_calc() (gastop.evaluator.Evaluator static method)

 	Crossover (class in gastop.crossover)

D

 	
 	default() (gastop.encoders.ConfigEncoder method)

 	(gastop.encoders.PopulationEncoder method)

E

 	
 	Evaluator (class in gastop.evaluator)

F

 	
 	FitnessFunction (class in gastop.fitness)

G

 	
 	gaussian() (gastop.mutator.Mutator static method)

 	
 	GenAlg (class in gastop.genalg)

 	generate_random() (gastop.genalg.GenAlg method)

I

 	
 	init_file_parser() (in module gastop.utilities)

 	initialize_population() (gastop.genalg.GenAlg method)

 	
 	interference_ray_tracing() (gastop.evaluator.Evaluator static method)

 	inverse_square_rank_probability() (gastop.selector.Selector static method)

L

 	
 	load_progress_history() (in module gastop.utilities)

 	
 	load_state() (gastop.genalg.GenAlg static method)

M

 	
 	mark_duplicates() (gastop.truss.Truss method)

 	mass_basic() (gastop.evaluator.Evaluator static method)

 	
 	mat_struct_analysis_DSM() (gastop.evaluator.Evaluator static method)

 	Mutator (class in gastop.mutator)

N

 	
 	numpy_decoder() (in module gastop.encoders)

P

 	
 	plot() (gastop.truss.Truss method)

 	PopulationEncoder (class in gastop.encoders)

 	
 	ProgMon (class in gastop.progmon)

 	progress_monitor() (gastop.progmon.ProgMon method)

 	pseudo_bit_flip() (gastop.mutator.Mutator static method)

R

 	
 	rastrigin() (gastop.fitness.FitnessFunction static method)

 	
 	rosenbrock() (gastop.fitness.FitnessFunction static method)

 	run() (gastop.genalg.GenAlg method)

S

 	
 	save_gif() (in module gastop.utilities)

 	save_progress_history() (in module gastop.utilities)

 	save_state() (gastop.genalg.GenAlg method)

 	
 	Selector (class in gastop.selector)

 	shuffle_index() (gastop.mutator.Mutator static method)

 	single_point_split() (gastop.crossover.Crossover static method)

 	sphere() (gastop.fitness.FitnessFunction static method)

T

 	
 	tournament() (gastop.selector.Selector static method)

 	
 	Truss (class in gastop.truss)

 	two_points_split() (gastop.crossover.Crossover static method)

U

 	
 	uniform_crossover() (gastop.crossover.Crossover static method)

 	
 	update_population() (gastop.genalg.GenAlg method)

W

 	
 	weighted_sum() (gastop.fitness.FitnessFunction static method)

Future Work

One of the main work that remains is fixing how classes are set up in the program.
Currently, the methods that update the population (Mutator, Crossover, and
Selector) are base classes that contain multiple methods within each. Users
can specify which method within these classes they want to use for a specific
action such as for updating edges, nodes, or properties, for a specific run
of the program. However, when a Mutator object gets instantiated, it contains
all of the Mutator methods even though only one of those methods is going to be
used during the course of that run. This is inefficient.

A better way to handle this situation is by implementing Abstract Base Classes
(ABCs), which will be done to improve the quality of the program. The goal is
to redefine Mutator, Crossover, and Selector classes as ABCs which contain
some run method. Note that the run method will not be defined in the ABC
itself. The current methods for Mutator, Crossover, and Selector will then
be defined as subclasses of its corresponding ABC. For example, the gaussian
Mutator method will now become a subclass of the ABC Mutator. Gaussian
subclass will contain a run method which performs the gaussian mutation. Now
a Gaussian Mutator object can get instantiated instead of a Mutator object as
a whole which contains unnecessary information from the program’s point of
view.

This change must be made along with a modification to the routine that
instantiates a Mutator, Crossover, or Selector object. Currently, one of
these objects is first instantiated and the __call__ method within the object
contains an argument that specifies the method that should be run. There are
several ways to modify this routine to make it work with the ABC implementation.
One method is to create a function that takes as input the user’s choice for
mutation, crossover, and selection. The function then instantiates the correct
objects and returns 3 objects: a specific type of Mutator, a specific type
of Crossover, and a specific type of Selector. When a mutation needs to be done,
the run method of the instantiated Mutator object can now be directly called.

Lessons Learned

Through this project, we learned numerous invaluable lessons which have ultimately
made us better programmers. We spent a lot of time up front to think through the
project as a group before starting to write any code. During these meetings,
we designed the interface of our program, organized the class hierarchy, outlined
the code structure, and divided up the work between the group members. These
initial design meetings helped us to be organized and avoided merge conflicts.

Several tools were also used during the course of this project. We learned and
implemented automated testing (Travis CI) which made it easier to debug the code.
Coveralls were used to track how much of the program was covered by tests, and
Codacy was used to identify issues with the code and to track/improve code
quality. These are practical tools that we are now exposed to and can utilize
in other projects outside of this course.

Coding specific lessons to improve the performance of the program were also
learned. By making mistakes, we learned that vectorization and logical
indexing are almost always a more efficient alternative as opposed to
for loops and if statements. Furthermore, although we’ve learned about
profiling tools and techniques, this project gave us an opportunity to apply
that knowledge to something substantial. When profiling, it is important to
begin with the highest level of software architecture. After identifying
hotspots (i.e. functions where the code spent most of the time), it is
important to check which lines in the function call require the most time.
In this way, the bottleneck can be easily found and fixed.

We also learned a little about programming in parallel. Initially, we wrote the
whole project to run in serial, and while it ran in a reasonable amount of time
for our purposes, it was not very scalable. As a result, we looked into
re-writing elements of the architecture to be performed in parallel. Because we
wrote the application in python, there are already many libraries written to
parallelize for loops and other code structures that can be easily parallelized,
but as a result many of the design decisions about what’s going on behind the
scenes at the system levels are not made by the user. In the end, we decided to
implement a multithreading design for the program using python’s
pool module from the multithreading library. In addition to learning about how
to break apart different operations in a multithreading environment, there were
also some unexpected issues that arose regarding random number generation seed.
In order to produce repeatable results during the design process, the random
number generator seed was specified. But when threads that created random
numbers were created, the random number generator seed was not carried through
to the individual threads. We also ran into some issues in how python passes
around object pointers instead of the object itself with the multithreading
design because it expects every function to pass something back instead of
simply providing an object which is edited in its place. Issues such as these
were identified by implementing well-designed unit tests from the beginning of
the design creation.

Design Decisions

GenAlg

The primary design decision for GenAlg was to have it be the driver for all of
the other classes and their respective functions. Originally, we had designed
the program to run with a main.py driver and have Genalg simply be the interface
between this driver script and the rest of the classes. But then we realized
that it would be more efficient to have Genalg orchestrate everything.
Especially once we moved to a multithreading design, it made more sense to have
function calls performed closer to the objects they are editing so that there
was a smaller chance multiple threads would ever have the possibility of trying
to read/write to the same object at once.

Evaluator

The majority of the design and coding time in the Evaluator class went into the matrix
structural analysis method. We initially planned on using an existing open source code and
then improving upon it, but after comparing several options, we found that none of the codes
available were particularly well designed, and most lacked sufficient documentation,
and would require a nearly ground up rewrite. We therefore decided to implement our own from
the beginning. We consulted several books on matrix structural analysis to understand the
basic operations the function must perform, and examined existing codes for basic structure
and things to improve upon.

One issue we found with many existing codes was that they computed the element stiffness matrices
individually, one by one. This is both inefficient and made the code difficult to read. We instead
constructed these matrices in a vectorized manner, where all the matrices were created at once in a stacked
3D array. Another issue with most of the open source codes we looked at was they simply did too many and
offered too many options. For example, they allowed for pinned or hinged connections between members,
distributed loads applied to members in various shapes and configurations, non-axisymmetric beams, and other
functionality that while desirable in a full featured structural solver, simply added unneeded complexity in
our case. Given the number of iterations our method would be expected to run for, we attempted to only include
functionality that would be absolutely necessary and that would work with the random nature of the structures generated.
For example, applying a distributed load to a member is impossible if the member only exists in certain trusses but not in others.
Similarly, allowing for hinged connections or twisted members is meaningless to implement if joints and members are distributed randomly.

Truss

The truss class was initially designed as a simple data structure, with no methods. Over time, we realized that it made sense to include
plot and print methods in the truss class, rather than as utility functions. We also found that several methods in the Evaluator class
required not the “raw” truss data, but a “cleaned” version, where self connected and duplicate members were removed. Initially this functionality
was implemented separately in each function, but we realized this would be much more efficient as methods of the truss class, so that
each truss has the ability to mark its own invalid edges, and return data in a form used by the other methods in the program.

FitnessFunction

An early decision made was to separate the evaluation and scoring of the trusses. This was primarily done to ease development,
so that we could build the core genetic algorithm components and test them with simple fitness functions before implementing the structural
analysis component. This also makes the program more general purpose, so that it can be used to optimize any function, unrelated to structural
problems. Of the four methods in the FitnessFunction class, three were implemented only for testing, to ensure that the genetic algorithm
could solve general optimization problems before specializing it for structural design. The structural fitness function allows the user
to optimize for several different factors in different degrees of importance by merely changing the weight factors.

Mutator

The mutator class contains multiple methods so that the user can apply different
mutator methods to mutate different components of the truss - for example, the
user may choose to apply a gaussian mutation for the nodes but a pseudo_bit_flip
mutation for the edges. We wrote a __call__ method for the mutator class, allowing
us to call the mutator object on a truss. All of the methods in the mutator class
take in one parent numpy array and return one child numpy array. An issue with the
mutator class, more specifically with the gaussian method, was the some elements
were being mutated out of the user specified domain. In order to fix this issue,
we incorporated a periodic boundary condition which means the values that went
out of the boundary are going to be wrapped around into the domain on the other side
by the same amount that it went out of the boundary. In order to improve run-times,
we found any particular method which was taking up more time than other function calls
and made the code more efficient by using logical indexing and vector expressions
instead of the initial ‘for’ loop implementations.

Selector

Much like the Mutator, Crossover, and FitnessFunction classes, the Selector class was structured to contain multiple methods of selecting parents for crossover and mutation. The idea was to modularize the selection process, allowing new selection methods to easily be added as additional methods of the class. Selector objects return numpy arrays of indices of trusses in the current population. Alternatively, we could have decided to have the selector objects return the actual parent trusses, but this would require more memory than a simple index. Instead, the trusses are extracted from the population with the index when needed, upon performing crossover and mutation. Both currently implemented methods of performing selection make use of numpy arrays and built-in vectorized numpy functions. Initial for-loop implementations of the methods were significantly slower.

Crossover

The crossover class contains multiple methods that can be used to perform crossover.
All of the crossover methods takes in two parent numpy arrays and returns two child
arrays. The decision to return two child arrays instead of one was made to ensure
that all possible “solutions” are explored. The reason it’s possible to create two
child arrays is due to the dual nature of the crossover methods. For example, a one
point split can be done by splitting the parent arrays at a certain point and by
combining the first half of parent A with the second half of parent B or vice versa.
Thus, two children are possible.

Future Work

One of the main work that remains is fixing how classes are set up in the program.
Currently, the methods that update the population (Mutator, Crossover, and
Selector) are base classes that contain multiple methods within each. Users
can specify which method within these classes they want to use for a specific
action such as for updating edges, nodes, or properties, for a specific run
of the program. However, when a Mutator object gets instantiated, it contains
all of the Mutator methods even though only one of those methods is going to be
used during the course of that run. This is inefficient.

A better way to handle this situation is by implementing Abstract Base Classes
(ABCs), which will be done to improve the quality of the program. The goal is
to redefine Mutator, Crossover, and Selector classes as ABCs which contain
some run method. Note that the run method will not be defined in the ABC
itself. The current methods for Mutator, Crossover, and Selector will then
be defined as subclasses of its corresponding ABC. For example, the gaussian
Mutator method will now become a subclass of the ABC Mutator. Gaussian
subclass will contain a run method which performs the gaussian mutation. Now
a Gaussian Mutator object can get instantiated instead of a Mutator object as
a whole which contains unnecessary information from the program’s point of
view.

This change must be made along with a modification to the routine that
instantiates a Mutator, Crossover, or Selector object. Currently, one of
these objects is first instantiated and the __call__ method within the object
contains an argument that specifies the method that should be run. There are
several ways to modify this routine to make it work with the ABC implementation.
One method is to create a function that takes as input the user’s choice for
mutation, crossover, and selection. The function then instantiates the correct
objects and returns 3 objects: a specific type of Mutator, a specific type
of Crossover, and a specific type of Selector. When a mutation needs to be done,
the run method of the instantiated Mutator object can now be directly called.

Lessons Learned

Through this project, we learned numerous invaluable lessons which have ultimately
made us better programmers. We spent a lot of time up front to think through the
project as a group before starting to write any code. During these meetings,
we designed the interface of our program, organized the class hierarchy, outlined
the code structure, and divided up the work between the group members. These
initial design meetings helped us to be organized and avoided merge conflicts.

Several tools were also used during the course of this project. We learned and
implemented automated testing (Travis CI) which made it easier to debug the code.
Coveralls were used to track how much of the program was covered by tests, and
Codacy was used to identify issues with the code and to track/improve code
quality. These are practical tools that we are now exposed to and can utilize
in other projects outside of this course.

Coding specific lessons to improve the performance of the program were also
learned. By making mistakes, we learned that vectorization and logical
indexing are almost always a more efficient alternative as opposed to
for loops and if statements. Furthermore, although we’ve learned about
profiling tools and techniques, this project gave us an opportunity to apply
that knowledge to something substantial. When profiling, it is important to
begin with the highest level of software architecture. After identifying
hotspots (i.e. functions where the code spent most of the time), it is
important to check which lines in the function call require the most time.
In this way, the bottleneck can be easily found and fixed.

We also learned a little about programming in parallel. Initially, we wrote the
whole project to run in serial, and while it ran in a reasonable amount of time
for our purposes, it was not very scalable. As a result, we looked into
re-writing elements of the architecture to be performed in parallel. Because we
wrote the application in python, there are already many libraries written to
parallelize for loops and other code structures that can be easily parallelized,
but as a result many of the design decisions about what’s going on behind the
scenes at the system levels are not made by the user. In the end, we decided to
implement a multithreading design for the program using python’s
pool module from the multithreading library. In addition to learning about how
to break apart different operations in a multithreading environment, there were
also some unexpected issues that arose regarding random number generation seed.
In order to produce repeatable results during the design process, the random
number generator seed was specified. But when threads that created random
numbers were created, the random number generator seed was not carried through
to the individual threads. We also ran into some issues in how python passes
around object pointers instead of the object itself with the multithreading
design because it expects every function to pass something back instead of
simply providing an object which is edited in its place. Issues such as these
were identified by implementing well-designed unit tests from the beginning of
the design creation.

Design Decisions

GenAlg

The primary design decision for GenAlg was to have it be the driver for all of
the other classes and their respective functions. Originally, we had designed
the program to run with a main.py driver and have Genalg simply be the interface
between this driver script and the rest of the classes. But then we realized
that it would be more efficient to have Genalg orchestrate everything.
Especially once we moved to a multithreading design, it made more sense to have
function calls performed closer to the objects they are editing so that there
was a smaller chance multiple threads would ever have the possibility of trying
to read/write to the same object at once.

Evaluator

The majority of the design and coding time in the Evaluator class went into the matrix
structural analysis method. We initially planned on using an existing open source code and
then improving upon it, but after comparing several options, we found that none of the codes
available were particularly well designed, and most lacked sufficient documentation,
and would require a nearly ground up rewrite. We therefore decided to implement our own from
the beginning. We consulted several books on matrix structural analysis to understand the
basic operations the function must perform, and examined existing codes for basic structure
and things to improve upon.

One issue we found with many existing codes was that they computed the element stiffness matrices
individually, one by one. This is both inefficient and made the code difficult to read. We instead
constructed these matrices in a vectorized manner, where all the matrices were created at once in a stacked
3D array. Another issue with most of the open source codes we looked at was they simply did too many and
offered too many options. For example, they allowed for pinned or hinged connections between members,
distributed loads applied to members in various shapes and configurations, non-axisymmetric beams, and other
functionality that while desirable in a full featured structural solver, simply added unneeded complexity in
our case. Given the number of iterations our method would be expected to run for, we attempted to only include
functionality that would be absolutely necessary and that would work with the random nature of the structures generated.
For example, applying a distributed load to a member is impossible if the member only exists in certain trusses but not in others.
Similarly, allowing for hinged connections or twisted members is meaningless to implement if joints and members are distributed randomly.

Truss

The truss class was initially designed as a simple data structure, with no methods. Over time, we realized that it made sense to include
plot and print methods in the truss class, rather than as utility functions. We also found that several methods in the Evaluator class
required not the “raw” truss data, but a “cleaned” version, where self connected and duplicate members were removed. Initially this functionality
was implemented separately in each function, but we realized this would be much more efficient as methods of the truss class, so that
each truss has the ability to mark its own invalid edges, and return data in a form used by the other methods in the program.

FitnessFunction

An early decision made was to separate the evaluation and scoring of the trusses. This was primarily done to ease development,
so that we could build the core genetic algorithm components and test them with simple fitness functions before implementing the structural
analysis component. This also makes the program more general purpose, so that it can be used to optimize any function, unrelated to structural
problems. Of the four methods in the FitnessFunction class, three were implemented only for testing, to ensure that the genetic algorithm
could solve general optimization problems before specializing it for structural design. The structural fitness function allows the user
to optimize for several different factors in different degrees of importance by merely changing the weight factors.

Mutator

The mutator class contains multiple methods so that the user can apply different
mutator methods to mutate different components of the truss - for example, the
user may choose to apply a gaussian mutation for the nodes but a pseudo_bit_flip
mutation for the edges. We wrote a __call__ method for the mutator class, allowing
us to call the mutator object on a truss. All of the methods in the mutator class
take in one parent numpy array and return one child numpy array. An issue with the
mutator class, more specifically with the gaussian method, was the some elements
were being mutated out of the user specified domain. In order to fix this issue,
we incorporated a periodic boundary condition which means the values that went
out of the boundary are going to be wrapped around into the domain on the other side
by the same amount that it went out of the boundary. In order to improve run-times,
we found any particular method which was taking up more time than other function calls
and made the code more efficient by using logical indexing and vector expressions
instead of the initial ‘for’ loop implementations.

Selector

Much like the Mutator, Crossover, and FitnessFunction classes, the Selector class was structured to contain multiple methods of selecting parents for crossover and mutation. The idea was to modularize the selection process, allowing new selection methods to easily be added as additional methods of the class. Selector objects return numpy arrays of indices of trusses in the current population. Alternatively, we could have decided to have the selector objects return the actual parent trusses, but this would require more memory than a simple index. Instead, the trusses are extracted from the population with the index when needed, upon performing crossover and mutation. Both currently implemented methods of performing selection make use of numpy arrays and built-in vectorized numpy functions. Initial for-loop implementations of the methods were significantly slower.

Crossover

The crossover class contains multiple methods that can be used to perform crossover.
All of the crossover methods takes in two parent numpy arrays and returns two child
arrays. The decision to return two child arrays instead of one was made to ensure
that all possible “solutions” are explored. The reason it’s possible to create two
child arrays is due to the dual nature of the crossover methods. For example, a one
point split can be done by splitting the parent arrays at a certain point and by
combining the first half of parent A with the second half of parent B or vice versa.
Thus, two children are possible.

 _static/minus.png

_static/plus.png

_static/up.png

_static/up-pressed.png

_images/example1_sim.gif
Minimum Fitness Score

4x10%

Fitness Score Evolution

39625.299

10

20 30 40 50
Generation

Truss Evolution

20
Iteration: 1.0
o 15
10
0s
00
05
10
4 100
o 075
N osb
0%
2 o8
X, 0, PN
075 W
/’77/ 5 -100 ~\

Z[m]

_images/example1_structandprint.png
(py37) nat-oitwireless-inside-vapornet108-c-19252:APC524_FinalProject Dan$ python -m GASTOp
overall:

I
Updat.ing: 100 | N | 1436/1486 [00:00<00:

Neo

Mass:

Cost

100%|

ANbRRNGLEOSS eSS X
GRN8RRREES28888

Svwnbsrwsansses

Start
Node
]
1
2

9.374 kg
1§ 10.83

Nodes
y z
-0.50 0.00
0.50 0.00
0.00 1.0
0.00 0.00
-0.47 1.99
0.89 0.33
-0.13 0.64
-0.97 1.06
0.79 135
-0.70 -0.68
-0.62 -0.85
-0.30 0.47
0.5 -0.83
-0.38 1.21
Edges
End Property
Node Type
3 0
3 0
3 4

dx
0.000e+00
0.000e+00
0.000e+00

-6.198e-04
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00

Deflections

y
0.000e+00
0.000e+00
0.000e+00

-1.323e-23
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00

dz
0.000e+00
0.000e+00
0.000e+00
-4.027e-03
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00

| 50/50 [00:40<00:00, 1.29it/s]
0, 12337.26it/s]

Truss

20

10
05

00

-10
7%°
T, s s ,ﬁﬁq“; \(\ﬂ\\
X[m]

Z[m]

_images/example2_structandprint.png
Overall: 100%| NEEEEENEENENNNNNENNENRNRRRNNNNNN | 250/250 [09:37<00:00, 2.39s/it]
Updating: 100% NNNNNNNNNRNSNNNNNNRNNNNNEREN | ©00/990 [00:00<00:00, 9050.62it/s]
Nodes Deflections
x z dx dy dz
o 0.00 0. 0.00 0.000e+00 0.000e+00 0.000e+00
1 0.00 0.00 1.00 0.000e+00 0.000e+00 0.000e+00
2 0.00 1.50 0.00 0.000e+00 0.000e+00 0.000e+00
3 000 150 1.00 0.0000+00 0.000e+00 0.000¢+00
4 0.00 3.00 0.00 0.0000+00 0.000e+00 ©.000¢+00
5 0.00 3.00 1.00 0.0006+00 0.000e+00 ©.000¢+00
6 3.00 0.00 1.00 1.162¢-03 2.634e-04 -6.606e-03
7 3.00 1. 1.00 7.377e-04 1.378e-07 -5.313e-03
8 3.00 3.00 1.00 7.375e-04 6.109e-04 -4.804e-03
9 0.42 2.60 0.22 0.000e+00 0.000e+00 0.000e+00 -
10 0.43 265 0.53 0.0000+00 0.000e+00 0.000¢+00 £
11 2,64 1.43 0.3 0.0000+00 0.000e+00 ©.000¢+00 =
12 2.45 216 0.07 0.0006+00 0.000e+00 ©.000¢+00 N
13 024 231 0.76 0.000¢+00 0.000e+00 ©.000¢+00
14 0.18 0.55 0.40 0.000e+00 0.000e+00 0.000e+00
15 0.61 2.44 0.44 0.000e+00 0.000e+00 0.000e+00
16 2.24 1.84 0.62 0.000e+00 0.000e+00 0.000e+00
17 2.23 1.40 0.91 0.000e+00 0.000e+00 0.000e+00
8 177 124 0.9 0.0000+00 0.000e+00 0.000¢+00
Edges
start End Property X \Y
MNode Node Type Fos [’77/ 25 0 00 N
0 4 8 2 4.98
1 5 8 2 5.17
2 3 7 2 5.13
3 4 7 1 .80
4] 7 1 .80
5 2 6 2 4.49
6 3 6 2 4.63
Mass: 9.589 kg
Cost: $ 37.28

nav.xhtml

 Table of Contents

 		
 GASTOp

 		
 Quickstart

 		
 Installation

 		
 Usage

 		
 Contribute

 		
 License

 		
 Installation

 		
 From PyPI

 		
 From GitHub

 		
 Usage

 		
 Command Line

 		
 Python Package

 		
 Config File Formatting and Options

 		
 Required Parameters

 		
 General Parameters

 		
 Fitness Function Parameters

 		
 Evaluator Parameters

 		
 Genetic Algorithm Parameters

 		
 Progress Monitor Parameters

 		
 Optional Parameters

 		
 Random Generation Parameters

 		
 Crossover Parameters

 		
 Mutator Parameters

 		
 Selector Parameters

 		
 Properties Parsing

 		
 API Documentation

 		
 Crossover

 		
 Evaluator

 		
 FitnessFunction

 		
 GenAlg

 		
 Mutator

 		
 Progress Monitor

 		
 Selector

 		
 Truss

 		
 encoders

 		
 utilities

 		
 Examples

 		
 Pyramid Example Configuration File

 		
 Pyramid Example Results

 		
 Cantilever Example Results

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

